更多
建立数据中台精细化运营|北京天拓明达电子科技有限公司
      

目前业内对于数据中台建设的经验还是不足的,我这里给大家讲讲如何建立数据中台。

我们经常在手机上常看见各种公众号文章提及数据中台这个概念,我也跟各个行业的一些大公司的 CIO 交流过,发现很多行业的大公司都开始组建大数据团队,建设数据中台。结合文章和交流获取的信息,我切身感受到宏观经济对技术的影响。2018 年开始经济下行,生意不好做了,粗放的经营已经不行了,随着数据时代的来临,越来越多的企业想通过数据驱动来进行精细化的运营和数据化转型。

对于20人以上的企业来讲,如果不进行精细化运营,那么各种问题可能层出不穷,譬如:小到上演会议室争夺战,大到各种业务团队不互相、办公沟通增加成本、办公室物资损耗现象严重等等,日复一日地恶性循环,*终不但会使管理者和员工感到精疲力尽,还会惊讶地发现:企业业绩没有翻番,管理成本和经营成本等费用反倒是陡然蹿高,企业陷入了持续亏损的泥潭。

这时候,一个连接前后台,并且为业务负责的数据中台的出现就非常有必要了,它能更好的帮助企业进行精细化运营,从而减少甚至杜绝上面提到的任何问题。

如何建立数据中台:

**步,需要有个完整的地方把所有数据串联起来;第二步,数据需要打通,并被整理好;第三步,数据要能够驱动业务增长。其中,只有第二步和软件架构有关系,其它两步与软件架构的关联都不是那么紧密,**步是信息化,第三步与管理层更紧密。

首先,数据中台一定要与业务价值对齐。构建数据中台,*重要的不是技术,也不是数据质量好不好,而是数据思维和数据文化。数据思维就是要建立起从数据的视角去思考问题的方式;数据文化就是要把数据和业务当成一体去看,而不是只将数据当作一个支持工具,想清楚业务对于数据的诉求是构建数据中台的**步。不要在业务场景还没有明确、优先级还不清晰、价值度量体系尚未建立起来的时候,就建立大而全的数据平台,

其次,数据中台应该从小数据、小场景做起。数据中台是面向场景而非面向技术的,这种与客户的业务、企业的结构和信息化发展阶段有着紧密的相关性的业务基础架构,是很难买一个大而全的产品来一劳永逸解决的。

一开始的时候需要顶层设计,面向业务愿景制定中台的整体规划,**的梳理数据**全景蓝图,这就是上图左边的黑色框架部分,通过业务愿景驱动出所有的业务场景探索,从而推导出数据中台的全景架构、技术支撑。

但是在实施的时候,要从具体的业务场景出发。从高价值数据集场景做起,然后顺着这个场景竖切,找到数据全景图中的一个或多个数据集合,从小数据场景落地,这样才能快速验证价值。大处思考,全局拉通,避免后续的数据孤岛,但是从小数据集切入,从可实现性高的场景启动。然后一个个的场景做起来,业务价值和中台能力也就同步建立起来了。

企业实际案例:数据中台的建立一定会伴随着企业架构的调整,除非两家企业的业务都是一样的,否则不会存在对一个企业都适用的数据中台。

企业建设数据中台,可以通过合理规划、复用内部现有已经完善的大数据处理工具来支撑建设,充分借鉴业界数据中台建设实践,从核心需求出发,以某垂直业务的数据入手,打通数据采集、存储、计算、治理、服务的工作全流程,逐步扩展到全域数据的接入、加工和管理,建设起自有的数据中台。

笔者和阿里的高层就数据中台有过一次朋友之间的聊天,他给我讲述了阿里的数据中台应该是什么样子的。

阿里的业务中台包含两个数据库,一个数据生产库,一个数据中台(历史库),包含了所有的历史数据和关键算法。以阿里电商为例,用户如果想买一个手机,在下单页面就会推荐手机壳、充电宝等相关产品。但值得注意的是,研发不知道你喜欢上面,在服务的过程中,需要根据你的一系列消费行为或者其他活动的历史记录去分析。

那么问题来了,如果这个数据量非常庞大,现查是非常慢的,不可能瞬间就查到结果,那怎么办呢?这就是数据中台要做的事情,把用户在历史库里的一堆数据做成一序列业务模型,然后在业务中台里要查某一用户喜欢什么时,它能立马调出结果并反馈,这是数据中台*大的魅力,这个反馈可能是毫秒级的。

这才是数据中台真正发挥价值的地方,而不是说做个可视化大屏就觉得有了数据中台或是听说数据有价值就去搞个数据中台,这都是没有真正理解数据中台的表现。从建设的角度来讲,一般是先建设业务中台,然后有了一定量的数据,想清楚了这个数据该怎么用才去建设数据中台,然后再反过来优化业务能力,让业务智能化。